Heavy-Duty Gas Turbine Operating and Maintenance Considerations

Robert Hoeft, Jamison Janawitz, and Richard Keck
GE Energy Services
Atlanta, GA
Introduction

Maintenance costs and availability are two of the most important concerns to the equipment owner. A maintenance program that optimizes the owner’s costs and maximizes equipment availability must be instituted. For a maintenance program to be effective, owners must develop a general understanding of the relationship between their operating plans and priorities for the plant, the skill level of operating and maintenance personnel, and the manufacturer's recommendations regarding the number and types of inspections, spare parts planning, and other major factors affecting component life and proper operation of the equipment.

In this paper, operating and maintenance practices will be reviewed, with emphasis placed on types of inspections plus operating factors that influence maintenance schedules. A well-planned maintenance program will result in maximum equipment availability and optimal maintenance costs.

Note: The operating and maintenance discussions presented in this paper are generally applicable to all GE heavy-duty gas turbines; i.e., MS3000, 5000, 6000, 7000 and 9000. For purposes of illustration, the MS7001EA was chosen. Specific questions on a given machine should be directed to the local GE Energy Services representative.

Maintenance Planning

Advance planning for maintenance is a necessity for utility, industrial and cogeneration plants in order to minimize downtime. Also the correct performance of planned maintenance and inspection provides direct benefits in reduced forced outages and increased starting reliability, which in turn reduces unscheduled repair downtime. The primary factors which affect the maintenance planning process are shown in [Figure 1](#) and the owners’ operating mode will determine how each factor is weighted.

Parts unique to the gas turbine requiring the most careful attention are those associated with

![Figure 1. Key factors affecting maintenance planning](image-url)
the combustion process together with those exposed to high temperatures from the hot gases discharged from the combustion system. They are called the hot-gas-path parts and include combustion liners, end caps, fuel nozzle assemblies, crossfire tubes, transition pieces, turbine nozzles, turbine stationary shrouds and turbine buckets.

The basic design and recommended maintenance of GE heavy-duty gas turbines are oriented toward:

- Maximum periods of operation between inspection and overhauls
- In-place, on-site inspection and maintenance
- Use of local trade skills to disassemble, inspect and re-assemble

In addition to maintenance of the basic gas turbine, the control devices, fuel metering equipment, gas turbine auxiliaries, load package, and other station auxiliaries also require periodic servicing.

It is apparent from the analysis of scheduled outages and forced outages (Figure 2) that the primary maintenance effort is attributed to five basic systems: controls and accessories, combustion, turbine, generator and balance-of-plant. The unavailability of controls and accessories is generally composed of short-duration outages, whereas conversely the other four systems are composed of fewer, but usually longer-duration outages.

The inspection and repair requirements, outlined in the Maintenance and Instructions Manual provided to each owner, lend themselves to establishing a pattern of inspections. In addition, supplementary information is provided through a system of Technical Information Letters. This updating of information, contained in the Maintenance and Instructions Manual, assures optimum installation, operation and maintenance of the turbine. Many of the Technical Information Letters contain advisory technical recommendations to resolve issues and improve the operation, mainte-
nance, safety, reliability or availability of the turbine. The recommendations contained in Technical Information Letters should be reviewed and factored into the overall maintenance planning program.

For a maintenance program to be effective, from both a cost and turbine availability standpoint, owners must develop a general understanding of the relationship between their operating plans and priorities for the plant and the manufacturer’s recommendations regarding the number and types of inspections, spare parts planning, and other major factors affecting the life and proper operation of the equipment. Each of these issues will be discussed as follows in further detail.

Gas Turbine Design Maintenance Features

The GE heavy-duty gas turbine is designed to withstand severe duty and to be maintained onsite, with off-site repair required only on certain combustion components, hot-gas-path parts and rotor assemblies needing specialized shop service. The following features are designed into GE heavy-duty gas turbines to facilitate on-site maintenance:

- All casings, shells and frames are split on machine horizontal centerline. Upper halves may be lifted individually for access to internal parts.
- With upper-half compressor casings removed, all stator vanes can be slid circumferentially out of the casings for inspection or replacement without rotor removal. On most designs, the variable inlet guide vanes (VIGVs) can be removed radially with upper half of inlet casing removed.
- With the upper-half of the turbine shell lifted, each half of the first stage nozzle assembly can be removed for inspection, repair or replacement without rotor removal. On some units, upper-half, later-stage nozzle assemblies are lifted with the turbine shell, also allowing inspection and/or removal of the turbine buckets.
- All turbine buckets are moment-weighed and computer charted in sets for rotor spool assembly so that they may be replaced without the need to remove or rebalance the rotor assembly.
- All bearing housings and liners are split on the horizontal centerline so that they may be inspected and replaced, when necessary. The lower half of the bearing liner can be removed without removing the rotor.
- All seals and shaft packings are separate from the main bearing housings and casing structures and may be readily removed and replaced.
- On most designs, fuel nozzles, combustion liners and flow sleeves can be removed for inspection, maintenance or replacement without lifting any casings.
- All major accessories, including filters and coolers, are separate assemblies that are readily accessible for inspection or maintenance. They may also be individually replaced as necessary.

Inspection aid provisions have been built into GE heavy-duty gas turbines to facilitate conducting several special inspection procedures. These special procedures provide for the visual inspection and clearance measurement of some
of the critical internal turbine gas-path components without removal of the gas turbine outer casings and shells. These procedures include gas-path borescope inspection and turbine nozzle axial clearance measurement.

Borescope Inspections

GE heavy-duty gas turbines incorporate provisions in both compressor casings and turbine shells for gas-path visual inspection of intermediate compressor rotor stages, first, second and third-stage turbine buckets and turbine nozzle partitions by means of the optical borescope. These provisions, consisting of radially aligned holes through the compressor casings, turbine shell and internal stationary turbine shrouds, are designed to allow the penetration of an optical borescope into the compressor or turbine flow path area, as shown in Figure 3.

An effective borescope inspection program can result in removing casings and shells from a turbine unit only when it is necessary to repair or replace parts. Figure 4 provides a recommended interval for a planned borescope inspection program following initial base line inspections. It should be recognized that these borescope inspection intervals are based on average unit operating modes. Adjustment of these borescope intervals may be made based on operating experience and the individual unit mode of operation, the fuels used and the results of previous borescope inspections.

The application of a monitoring program utilizing a borescope will allow scheduling outages and pre-planning of parts requirements, resulting in lower maintenance costs and higher availability and reliability of the gas turbine.

Major Factors Influencing Maintenance and Equipment Life

There are many factors that can influence equipment life and these must be understood and accounted for in the owner’s maintenance planning. As indicated in Figure 5, starting cycle, power setting, fuel and level of steam or water injection are key factors in determining the maintenance interval requirements as these factors directly influence the life of critical gas turbine parts.

In the GE approach to maintenance planning, a gas fuel unit operating continuous duty, with no water or steam injection, is established as the baseline condition which sets the maximum recommended maintenance intervals. For operation that differs from the baseline, maintenance factors are established that determine the increased level of maintenance that is required. For example, a maintenance factor of two would indicate a maintenance interval that is half of the baseline interval.
Starts and Hours Criteria

Gas turbines wear in different ways for different service-duties, as shown in Figure 6. Thermal mechanical fatigue is the dominant limiter of life for peaking machines, while creep, oxidation, and corrosion are the dominant limiters of life for continuous duty machines. Interactions of these mechanisms are considered in the GE design criteria, but to a great extent are second order effects. For that reason, GE bases gas turbine maintenance requirements on independent counts of starts and hours. Whichever criteria limit is first reached determines the maintenance interval. A graphical display of the GE approach is shown in Figure 7. In this figure, the inspection interval recommendation is defined by the rectangle established by the starts and hours criteria. These recommendations for inspection fall within the design life expectations and are selected such that components verified to be acceptable for continued use at the inspection point will have low risk of failure during the subsequent operating interval.

An alternative to the GE approach, which is sometimes employed by other manufacturers, converts each start cycle to an equivalent number of operating hours (EOH) with inspection intervals based on the equivalent hours count. For the reasons stated above, GE does not agree with this approach. This logic can create the impression of longer intervals, while in reality more frequent maintenance inspections are required. Referring again to Figure 7, the starts and hours inspection "rectangle" is reduced in half as defined by the diagonal line from the starts limit at the upper left hand corner to the hours limit at the lower right hand corner. Midrange duty applications, with hours per start ratios of 30-50, are particularly penalized by this approach.

This is further illustrated in Figure 8 for the example of an MS7001EA gas turbine operating on gas fuel, at base load conditions with no steam or water injection or trips from load. The unit operates 4000 hours and 300 starts per year. Following GE’s recommendations, the operator would perform the hot gas path inspection after four years of operation, with starts being the limiting condition. Performing maintenance on this same unit based on an equivalent hours criteria would require a hot gas path inspection after 2.4 years. Similarly, for a continuous duty application operating 8000 hours and 160 starts per year, the GE recommendation would be to perform the hot gas path inspection after 2.4 years.
path inspection after three years of operation with the operating hours being the limiting condition for this case. The equivalent hours criteria would set the hot gas path inspection after 2.1 years of operation for this application.

Service Factors

While GE does not ascribe to the equivalency of starts to hours, there are equivalencies within a wear mechanism that must be considered. As shown in Figure 9, influences such as fuel type
and quality, firing temperature setting, and the amount of steam or water injection are considered with regard to the hours-based criteria. Startup rate and the number of trips are considered with regard to the starts-based criteria. In both cases, these influences may act to reduce the maintenance intervals. When these service or maintenance factors are involved in a unit's operating profile, the hot-gas-path maintenance "rectangle" that describes the specific maintenance criteria for this operation is reduced from the ideal case, as illustrated in Figure 10. The following discussion will take a closer look at the key operating factors and how they can impact maintenance intervals as well as parts refurbishment/replacement intervals.

Fuel

Fuels burned in gas turbines range from clean natural gas to residual oils and impact maintenance, as illustrated in Figure 11. Heavier hydrocarbon fuels have a maintenance factor ranging from three to four for residual fuel and two to three for crude oil fuels. These fuels generally release a higher amount of radiant thermal energy, which results in a subsequent reduction in combustion hardware life, and frequently contain corrosive elements such as sodium, potassium, vanadium and lead that can lead to accelerated hot corrosion of turbine nozzles and buckets. In addition, some elements in these fuels can cause deposits either directly or through compounds formed with inhibitors that are used to prevent corrosion. These deposits impact performance and can lead to a need for more frequent maintenance.

Distillates, as refined, do not generally contain high levels of these corrosive elements, but harmful contaminants can be present in these fuels when delivered to the site. Two common ways of contaminating number two distillate fuel oil are: salt water ballast mixing with the cargo during sea transport, and contamination of the distillate fuel when transported to site in tankers, tank trucks or pipelines that were previously used to transport contaminated fuel, chemicals or leaded gasoline. From Figure 11, it can be seen that GE’s experience with distillate fuels indicates that the hot gas path maintenance factor can range from as low as one (equivalent to natural gas) to as high as three. Unless operating experience suggests otherwise, it is recommended that a hot gas path
maintenance factor of 1.5 be used for operation on distillate oil. Note also that contaminants in liquid fuels can affect the life of gas turbine auxiliary components such as fuel pumps and flow dividers.

As shown in Figure 11, gas fuels, which meet GE specifications, are considered the optimum fuel with regard to turbine maintenance and are assigned no negative impact. The importance of proper fuel quality has been amplified with Dry Low NOₓ (DLN) combustion systems. Proper adherence to GE fuel specifications in GEI-41040 is required to allow proper combustion system operation, and to maintain applicable warranties. Liquid hydrocarbon carryover can expose the hot-gas-path hardware to severe overtemperature conditions and can result in significant reductions in hot-gas-path parts lives or repair intervals. Owners can control this potential issue by using effective gas scrubber systems and by superheating the gaseous fuel prior to use to provide a nominal 50°F (28°C) of superheat at the turbine gas control valve connection.

The prevention of hot corrosion of the turbine buckets and nozzles is mainly under the control of the owner. Undetected and untreated, a single shipment of contaminated fuel can cause substantial damage to the gas turbine hot gas path components. Potentially high maintenance costs and loss of availability can be minimized or eliminated by:

- Placing a proper fuel specification on the fuel supplier. For liquid fuels, each shipment should include a report that identifies specific gravity, flash point, viscosity, sulfur content, pour point and ash content of the fuel.
- Providing a regular fuel quality sampling and analysis program. As part of this program, an online water in fuel oil monitor is recommended, as is a portable fuel analyzer that, as a
minimum, reads vanadium, lead, sodium, potassium, calcium and magnesium.

- Providing proper maintenance of the fuel treatment system when burning heavier fuel oils and by providing cleanup equipment for distillate fuels when there is a potential for contamination.

In addition to their presence in the fuel, contaminants can also enter the turbine via the inlet air and from the steam or water injected for NOx emission control or power augmentation. Carryover from evaporative coolers is another source of contaminants. In some cases, these sources of contaminants have been found to cause hot-gas-path degradation equal to that seen with fuel-related contaminants. GE specifications define limits for maximum concentrations of contaminants for fuel, air and steam/water.

Firing Temperatures

Significant operation at peak load, because of the higher operating temperatures, will require more frequent maintenance and replacement of hot-gas-path components. For an MS7001EA turbine, each hour of operation at peak load firing temperature (+100°F/56°C) is the same, from a bucket parts life standpoint, as six hours of operation at base load. This type of operation will result in a maintenance factor of six. Figure 12 defines the parts life effect corresponding to changes in firing temperature. It should be noted that this is not a linear relationship, as a +200°F/111°C increase in firing temperature would have an equivalency of six times six, or 36:1.

Higher firing temperature reduces hot-gas-path parts lives while lower firing temperature increases parts lives. This provides an opportunity to balance the negative effects of peak load operation by periods of operation at part load. However, it is important to recognize that the nonlinear behavior described above will not result in a one for one balance for equal magnitudes of over and under firing operation. Rather, it would take six hours of operation at -100°F/56°C under base conditions to compensate for one hour operation at +100°F/56°C over base load conditions.

It is also important to recognize that a reduction in load does not always mean a reduction in firing temperature. In heat recovery applications, where steam generation drives overall plant efficiency, load is first reduced by closing variable inlet guide vanes to reduce inlet airflow while maintaining maximum exhaust temperature. For these combined cycle applications, firing temperature does not decrease until load is reduced below approximately 80% of rated output. Conversely, a turbine running in simple cycle mode maintains full open inlet guide vanes during a load reduction to 80% and will experience over a 200°F/111°C reduction in firing temperature at this output level. The hot-gas-path parts life effects for these different

Figure 12. Bucket life firing temperature effect
modes of operation are obviously quite different. This turbine control effect is illustrated in Figure 13. Similarly, turbines with DLN combustion systems utilize inlet guide vane turndown as well as inlet bleed heat to extend operation of low NOx premix operation to part load conditions.

Firing temperature effects on hot gas path maintenance, as described above, relate to clean burning fuels, such as natural gas and light distillates, where creep rupture of hot gas path components is the primary life limiter and is the mechanism that determines the hot gas path maintenance interval impact. With ash-bearing heavy fuels, corrosion and deposits are the primary influence and a different relationship with firing temperature exists. Figure 14 illustrates the sensitivity of hot gas path maintenance factor to firing temperature for a heavy fuel operation. It can be seen that while the sensitivity to firing temperature is less, the maintenance factor itself is higher due to issues relating to the corrosive elements contained in these fuels.

Steam/Water Injection

Water (or steam) injection for emissions control or power augmentation can impact parts lives and maintenance intervals even when the water or steam meets GE specifications. This relates to the effect of the added water on the hot-gas transport properties. Higher gas conductivity, in particular, increases the heat transfer to the buckets and nozzles and can lead to higher metal temperature and reduced parts lives as shown in Figure 15.

Parts life impact from steam or water injection is related to the way the turbine is controlled. The control system on most base load applications reduces firing temperature as water or steam is injected. This counters the effect of the higher heat transfer on the gas side and results

Figure 13. Firing temperature and load relationship - heat recovery vs. simple cycle operation

Figure 14. Heavy fuel maintenance factors

Figure 15. Steam/water injection and bucket nozzle life
in no impact on bucket life. On some installations, however, the control system is designed to maintain firing temperature constant with water injection level. This results in additional unit output but it decreases parts life as previously described. Units controlled in this way are generally in peaking applications where annual operating hours are low or where operators have determined that reduced parts lives are justified by the power advantage. GE describes these two modes of operation as dry control curve operation and wet control curve operation, respectively. Figure 16 illustrates the wet and dry control curve and the performance differences that result from these two different modes of control.

An additional factor associated with water or steam injection relates to the higher aerodynamic loading on the turbine components that results from the injected water increasing the cycle pressure ratio. This additional loading can increase the downstream deflection rate of the second- and third-stage nozzles, which would reduce the repair interval for these components. However, the introduction of GTD-222, a new high creep strength stage two and three nozzle alloy, has minimized this factor.

Maintenance factors relating to water injection for units operating on dry control range from one (for units equipped with GTD-222 second-stage and third-stage nozzles) to a factor of 1.5 for units equipped with FSX-414 nozzles and injecting 5% water. For wet control curve operation, the maintenance factor is approximately two at 5% water injection for GTD-222 and four for FSX-414.

Cyclic Effects

In the previous discussion, operating factors that impact the hours-based maintenance criteria were described. For the starts-based maintenance criteria, operating factors associated with the cyclic effects produced during startup, operation and shutdown of the turbine must be considered. Operating conditions other than the standard startup and shutdown sequence can potentially reduce the cyclic life of the hot gas path components and rotors, and, if present, will require more frequent maintenance and parts refurbishment and/or replacement.

Hot Gas Path Parts

Figure 17 illustrates the firing temperature changes occurring over a normal startup and shutdown cycle. Light-off, acceleration, loading, unloading and shutdown all produce gas temperature changes that produce corresponding metal temperature changes. For rapid changes in gas temperature, the edges of the bucket or...
nozzle respond more quickly than the thicker bulk section, as pictured in Figure 18. These gradients, in turn, produce thermal stresses that, when cycled, can eventually lead to cracking. Figure 19 describes the temperature strain history of an MS7001EA stage 1 bucket during a normal startup and shutdown cycle. Light-off and acceleration produce transient compressive strains in the bucket as the fast responding leading edge heats up more quickly than the thicker bulk section of the airfoil. At full load conditions, the bucket reaches its maximum metal temperature and a compressive strain produced from the normal steady state temperature gradients that exist in the cooled part. At shutdown, the conditions reverse where the faster responding edges cool more quickly than the bulk section, which results in a tensile strain at the leading edge.

Thermal mechanical fatigue testing has found that the number of cycles that a part can withstand before cracking occurs is strongly influenced by the total strain range and the maximum metal temperature experienced. Any operating condition that significantly increases the strain range and/or the maximum metal temperature over the normal cycle conditions will act to reduce the fatigue life and increase the starts-based maintenance factor. For example, Figure 20 compares a normal operating cycle with one that includes a trip from full load. The significant increase in the strain range for a trip cycle results in a life effect that equates to eight normal start/stop cycles, as shown. Trips from part load will have a reduced

Figure 18. First stage bucket transient temperature distribution

Figure 19. Bucket low cycle fatigue (LCF)
impact because of the lower metal temperatures at the initiation of the trip event. Figure 21 illustrates that while a trip from loads greater than 80% has an 8:1 maintenance factor, a trip from full speed no load would have a maintenance factor of 2:1.

Similarly to trips from load, emergency starts and fast loading will impact the starts-based maintenance interval. This again relates to the increased strain range that is associated with these events. Emergency starts where units are brought from standstill to full load in less than five minutes will have a parts life effect equal to 20 normal start cycles and a normal start with fast loading will produce a maintenance factor of two.

While the factors described above will decrease the starts-based maintenance interval, part load operating cycles would allow for an extension of the maintenance interval. Figure 22 is a guideline that could be used in considering this type of operation. For example, two operating cycles to maximum load levels of less than 60% would equate to one start to a load greater than 60% or, stated another way, would have a maintenance factor of .5.
Rotor Parts

In addition to the hot gas path components, the rotor structure maintenance and refurbishment requirements are impacted by the cyclic effects associated with startup, operation and shutdown. Maintenance factors specific to an application's operating profile and rotor design must be determined and incorporated into the operators maintenance planning. Disassembly and inspection of all rotor components is required when the accumulated rotor starts reach the inspection limit. (See Figure 45 and Figure 46 in Inspection Intervals Section.)

For the rotor, the thermal condition when the start-up sequence is initiated is a major factor in determining the rotor maintenance interval and individual rotor component life. Rotors that are cold when the startup commences develop transient thermal stresses as the turbine is brought on line. Large rotors with their longer thermal time constants develop higher thermal stresses than smaller rotors undergoing the same startup time sequence. High thermal stresses will reduce maintenance intervals and thermal mechanical fatigue life.

The steam turbine industry recognized the need to adjust startup times in the 1950 to 1970 time period when power generation market growth led to larger and larger steam turbines operating at higher temperatures. Similar to the steam turbine rotor size increases of the 1950s and 1960s, gas turbine rotors have seen a growth trend in the 1980s and 1990s as the technology has advanced to meet the demand for combined cycle power plants with high power density and thermal efficiency.

With these larger rotors, lessons learned from both the steam turbine experience and the more recent gas turbine experience should be factored into the start-up control for the gas turbine and/or maintenance factors should be determined for an application's duty cycle to quantify the rotor life reductions associated with different severity levels. The maintenance factors so determined are used to adjust the rotor component inspection, repair and replacement intervals that are appropriate to that particular duty cycle.

Though the concept of rotor maintenance factors is applicable to all gas turbine rotors, only MS7001/9001F and FA rotors will be discussed in detail. The rotor maintenance factor for a startup is a function of the downtime following a previous period of operation. As downtime increases, the rotor metal temperature approaches ambient conditions and thermal fatigue impact during a subsequent start-up increases. Since the most limiting location determines the overall rotor impact, the rotor maintenance factor is determined from the upper bound locus of the rotor maintenance factors at these various features. For example, cold starts are assigned a rotor maintenance factor of two and hot starts a rotor maintenance factor of less than one due to the lower thermal stress under hot conditions.

Cold starts are not the only operating factor that influences rotor maintenance intervals and component life. Fast starts and fast loading, where the turbine is ramped quickly to load, increase thermal gradients and are more severe duty for the rotor. Trips from load and particularly trips followed by immediate restarts reduce the rotor maintenance interval as do hot restarts within the first hour of a hot shutdown. Figure 23 lists recommended operating factors that should be used to determine the rotor's overall maintenance factor for PG7241 and PG9351 design rotors. The factors to be used for other models are determined by applicable Technical Information Letters.

The significance of each of these factors to the maintenance requirements of the rotor is
dependent on the type of operation that the unit sees. There are three general categories of operation that are typical of most gas turbine applications. These are peaking, cyclic and continuous duty as described below:

- **Peaking units** have a relatively high starting frequency and a low number of hours per start. Operation follows a seasonal demand. Peaking units will generally see a high percentage of cold starts.

- **Cyclic duty units** start daily with weekend shutdowns. Twelve to sixteen hours per start is typical which results in a warm rotor condition for a large percentage of the starts. Cold starts are generally seen only following a startup after a maintenance outage or following a two day weekend outage.

- **Continuous duty applications** see a high number of hours per start and most starts are cold because outages are generally maintenance driven. While the percentage of cold starts is high, the total number of starts is low. The rotor maintenance interval on continuous duty units will be determined by service hours rather than starts.

Figure 24 lists operating profiles on the high end of each of these three general categories of gas turbine applications.

As can be seen in *Figure 24*, these duty cycles have different combinations of hot, warm and cold starts with each starting condition having a different impact on rotor maintenance interval as previously discussed. As a result, the starts based rotor maintenance interval will depend on an applications specific duty cycle. In a later section, a method will be described that allows the turbine operator to determine a maintenance factor that is specific to the operation's duty cycle. The application's integrated maintenance factor uses the rotor maintenance factors described above in combination with the actual duty cycle of a specific application and can be used to determine rotor inspection intervals. In this calculation, the reference duty cycle that yields a starts based maintenance factor equal to one is defined in *Figure 25*. Duty cycles different from the *Figure 25* definition, in particular duty cycles with more cold starts, or a high number of trips, will have a maintenance factor greater than one.
Heavy-Duty Gas Turbine Operating and Maintenance Considerations

Combustion Parts

A typical combustion system contains transition pieces, combustion liners, flow sleeves, head-end assemblies containing fuel nozzles and cartridges, end caps and end covers, and assorted other hardware including cross-fire tubes, spark plugs and flame detectors. In addition, there can be various fuel and air delivery components such as purge or check valves and flex hoses. GE provides several types of combustion systems including standard combustors, Multi-Nozzle Quiet Combustors (MNQC), IGCC combustors and Dry Low NOx (DLN) combustors. Each of these combustion systems have unique operating characteristics and modes of operation with differing responses to operational variables affecting maintenance and refurbishment requirements.

The maintenance and refurbishment requirements of combustion parts are impacted by many of the same factors as hot gas path parts including start cycle, trips, fuel type and quality, firing temperature and use of steam or water injection for either emissions control or power augmentation. However, there are other factors specific to combustion systems. One of these factors is operating mode, which describes the applied fueling pattern. The use of low load operating modes at high loads can reduce the maintenance interval significantly. An example of this is the use of DLN1 extended lean-lean mode at high loads, which can result in a maintenance factor of 10. Another factor that can impact combustion system maintenance is acoustic dynamics. Acoustic dynamics are pressure oscillations generated by the combustion system, which, if high enough in magnitude, can lead to significant wear and cracking. GE practice is to tune the combustion system to levels of acoustic dynamics low enough to ensure that the maintenance practices described here are not compromised.

Combustion maintenance is performed, if required, following each combustion inspection (or repair) interval. Inspection interval guidelines are included in Figure 42. It is expected and recommended that intervals be modified based on specific experience. Replacement intervals are usually defined by a recommended number of combustion (or repair) intervals and are usually combustion component specific. In general, the replacement interval as a function of the number of combustion inspection intervals is reduced if the combustion inspection interval is extended. For example, a component having an 8,000 hour combustion inspection (CI) interval and a 6(CI) or 48,000 hour replacement interval would have a replacement interval of 4(CI) if the inspection interval was increased to 12,000 hours to maintain a 48,000 hour replacement interval.

For combustion parts, the base line operating conditions that result in a maintenance factor of unity are normal fired start-up and shut-down to base load on natural gas fuel without steam or water injection. Factors that increase the hours-based maintenance factor include peaking duty,

Baseline Unit Achieves Maintenance Factor = 1

<table>
<thead>
<tr>
<th>Cyclic Duty</th>
<th>Maintenance Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Starts/Week</td>
<td>4900 Hours/Year</td>
</tr>
<tr>
<td>16 Hour/Start</td>
<td>4800 Hours/Year</td>
</tr>
<tr>
<td>4 Outage/Year Maintenance</td>
<td>300 Starts/Year</td>
</tr>
<tr>
<td>50 Start/Week</td>
<td>0 Trips/Year</td>
</tr>
<tr>
<td>1 Maintenance Factor</td>
<td></td>
</tr>
</tbody>
</table>

12 Cold Starts/Year (Down >40 Hr.) 4%
39 Warm 2 Starts/Year (Down 20-40 Hr.) 13%
245 Warm 1 Starts/Year (Down 1-20 Hr.) 82%
3 Hot Starts per Year 1%

Figure 25. Baseline for starts-based maintenance factor definitions
distillate or heavy fuels, steam or water injection with dry or wet control curves. Factors that increase starts-based maintenance factor include peaking duty, fuel type, steam or water injection, trips, emergency starts and fast loading.

Off Frequency Operation

GE heavy-duty single shaft gas turbines are designed to operate over a 95% to 105% speed range. However, operation at other than rated speed has the potential to impact maintenance requirements. Depending on the industry code requirements, the specifics of the turbine design and the turbine control philosophy employed, operating conditions can result that will accelerate life consumption of hot gas path components. Where this is true, the maintenance factor associated with this operation must be understood and these speed events analyzed and recorded so as to include in the maintenance plan for this gas turbine installation.

Generator drive turbines operating in a power system grid are sometimes required to meet operational requirements that are aimed at maintaining grid stability under conditions of sudden load or capacity changes. Most codes require turbines to remain on line in the event of a frequency disturbance. For under-frequency operation, the turbine output decrease that will normally occur with a speed decrease is allowed and the net impact on the turbine as measured by a maintenance factor is minimal. In some grid systems, there are more stringent codes that require remaining on line while maintaining load on a defined schedule of load versus grid frequency. One example of a more stringent requirement is defined by the National Grid Company (NGC). In the NGC code, conditions under which frequency excursions must be tolerated and/or controlled are defined as shown in Figure 26.

![Figure 26. The NGC requirement for output vs. frequency capability overall ambients less than 25°C (77°F)](image)

With this specification, load must be maintained constant over a frequency range of +/- 1% (+/- 0.5Hz in a 50 Hz grid system) with a one percent load reduction allowed for every additional one percent frequency drop down to a minimum 94% speed. Requirements stipulate that operation between 95% to 104% speed can be continuous but operation between 94% and 95% is limited to 20 seconds for each event. These conditions must be met up to a maximum ambient temperature of 25°C (77°F).

Under-frequency operation impacts maintenance to the degree that nominally controlled turbine output must be exceeded in order to meet the specification defined output requirement. As speed decreases, the compressor airflow decreases, reducing turbine output. If this normal output fall-off with speed results in loads less than the defined minimum, power augmentation must be applied. Turbine overfiring is the most obvious augmentation option but other means such as utilizing gas turbine water wash have some potential as an augmentation action. Ambient temperature can be a significant factor in the level of power augmentation required. This relates to compressor operating margin that may require inlet guide vane closure if compressor corrected speed reaches limiting conditions. For an FA class turbine, operation at 0°C
(32°F) would require no power augmentation to meet NGC requirements while operation at 25°C (77°F) would fall below NGC requirements without a substantial amount of power augmentation. As an example, Figure 27 illustrates the output trend at 25°C (77°F) for an FA class gas turbine as grid system frequency changes and where no power augmentation is applied.

![Figure 27. Turbine output at under-frequency operation](image)

Figure 27. Turbine output at under-frequency operation

In Figure 27, the gas turbine output shortfall at the low frequency end (47.5Hz) of the NGC continuous operation compliance range would require a 160°F increase over base load firing temperature to be in compliance. At this level of over-fire, a maintenance factor exceeding 100x would be applied to all time spent at these conditions. Overfiring at this level would have implications on combustion operability and emissions compliance as well as have major impact on hot gas path parts life. An alternative power augmentation approach that has been utilized in FA gas turbines for NGC code compliance utilizes water wash in combination with increased firing temperature. As shown in Figure 28, with water wash on, 50°F overfiring is required to meet NGC code for operating conditions of 25°C (77°F) ambient temperature and grid frequency at 47.5 HZ. Under these conditions, the hours-based maintenance factor would be 3x as determined by Figure 12. It is important to understand that operation at over-frequency conditions will not trade one-for-one for periods at under-frequency conditions. As was discussed in the firing temperature section above, operation at peak firing conditions has a nonlinear logarithmic relationship with maintenance factor.

As described above, the NGC code requires operation for up to 20 seconds per event at an under-frequency condition between 94% to 95% speed. Grid events that expose the gas turbine to frequencies below the minimum continuous speed of 95% introduce additional maintenance and parts replacement considerations. Operation at speeds less than 95% requires increased over-fire to achieve compliance, but also introduces an additional concern that relates to the potential exposure of the blading to excitations that could result in blade resonant response and reduced fatigue life. Considering this potential, a starts-based maintenance factor of 60x is assigned to every 20-second excursion to grid frequencies less than 95% speed.

Over-frequency or high speed operation can also introduce conditions that impact turbine maintenance and part replacement intervals. If speed is increased above the nominal rated
speed, the rotating components see an increase in mechanical stress proportional to the square of the speed increase. If firing temperature is held constant at the overspeed condition, the life consumption rate of hot gas path rotating components will increase as illustrated in Figure 29 where one hour of operation at 105% speed is equivalent to 2 hours at rated speed. If overspeed operation represents a small fraction of a turbine’s operating profile, this effect on parts life can sometimes be ignored. However, if significant operation at overspeed is expected and rated firing temperature is maintained, the accumulated hours must be recorded and included in the calculation of the turbine’s overall maintenance factor and the maintenance schedule adjusted to reflect the overspeed operation. An option that mitigates this effect is to under fire to a level that balances the overspeed parts life effect. Some mechanical drive applications have employed that strategy to avoid a maintenance factor increase.

The frequency-sensitive discussion above describes code requirements related to turbine output capability versus grid frequency, where maintenance factors within the continuous operating speed range are hours-based. There are other considerations related to turbines operating in grid frequency regulation mode. In frequency regulation mode, turbines are dispatched to operate at less than full load and stand ready to respond to a frequency disturbance by rapidly picking up load. NGC requirements for units in frequency regulation mode include being equipped with a fast-acting proportional speed governor operating with an overall speed droop of 3-5%. With this control, a gas turbine will provide a load increase that is proportional to the size of the grid frequency change. For example, a turbine operating with five percent droop would pick up 20% load in response to a .5 Hz (1%) grid frequency drop. The rate at which the turbine picks up load in response to an under-frequency condition is determined by the gas turbine design and the response of the fuel and compressor airflow control systems, but would typically yield a less than ten-second turbine response to a step change in grid frequency. Any maintenance factor associated with this operation depends on the magnitude of the load change that occurs. A turbine dispatched at 50% load that responded to a 2% frequency drop would have parts life and maintenance impact on the hot gas path as well as the rotor structure. More typically, however, turbines are dispatched at closer to rated load where maintenance factor effects may be less severe. The NGC requires 10% plant output in 10 seconds in response to a .5Hz (1%) under frequency condition. In a combined cycle installation where the gas turbine alone must pick up the transient loading, a load change of 15% in 10 seconds would be required to meet that requirement. Maintenance factor effects related to this would be minimal for the hot gas path but would impact the rotor maintenance factor. For an FA class rotor, each frequency excursion would be counted as an additional factored start in the numerator of the maintenance factor calculation described in Figure 45. A further
requirement for the rotor is that it must be in hot running condition prior to being dispatched in frequency regulation mode.

Air Quality

Maintenance and operating costs are also influenced by the quality of the air that the turbine consumes. In addition to the deleterious effects of airborne contaminants on hot-gas-path components, contaminants such as dust, salt and oil can also cause compressor blade erosion, corrosion and fouling. Twenty-micron particles entering the compressor can cause significant blade erosion. Fouling can be caused by submicron dirt particles entering the compressor as well as from ingestion of oil vapor, smoke, sea salt and industrial vapors.

Corrosion of compressor blading causes pitting of the blade surface, which, in addition to increasing the surface roughness, also serves as potential sites for fatigue crack initiation. These surface roughness and blade contour changes will decrease compressor airflow and efficiency, which in turn reduces the gas turbine output and overall thermal efficiency.

Generally, axial flow compressor deterioration is the major cause of loss in gas turbine output and efficiency. Recoverable losses, attributable to compressor blade fouling, typically account for 70 to 85 of the performance losses seen. As Figure 30 illustrates, compressor fouling to the extent that airflow is reduced by 5%, will reduce output by 13% and increase heat rate by 5.5%. Fortunately, much can be done through proper operation and maintenance procedures to minimize fouling type losses. On-line compressor wash systems are available that are used to maintain compressor efficiency by washing the compressor while at load, before significant fouling has occurred. Off-line systems are used to clean heavily fouled compressors. Other procedures include maintaining the inlet filtration system and inlet evaporative coolers as well as periodic inspection and prompt repair of compressor blading.

There are also non-recoverable losses. In the compressor, these are typically caused by non-deposit-related blade surface roughness, erosion and blade tip rubs. In the turbine, nozzle throat area changes, bucket tip clearance increases and leakages are potential causes. Some degree of unrecoverable performance degradation should be expected, even on a well-maintained gas turbine.

The owner, by regularly monitoring and recording unit performance parameters, has a very valuable tool for diagnosing possible compressor deterioration.

Inlet Fogging

One of the ways some users increase turbine output is through the use of inlet foggers. Foggers inject a large amount of moisture in the inlet ducting, exposing the forward stages of the compressor to a continuously moist environment. Operation of a compressor in such an environment may lead to long-term degradation of the compressor due to fouling, material property degradation, corrosion and erosion. Experience has shown that depending on...
the quality of water used, the inlet silencer and ducting material, and the condition of the inlet silencer, fouling of the compressor can be severe with inlet foggers. Evaporative cooler carryover and excessive water washing can produce similar effects. Figure 31 shows the long-term material property degradation resulting from operating the compressor in a wet environment. The water quality standard that should be adhered to is found in GEK-10194B.

For turbines with 403SS compressor blades, the presence of moisture will reduce blade fatigue strength by as much as 30% as well as subject the blades to corrosion. Further reductions in fatigue strength will result if the environment is acidic and if pitting is present on the blade. Pitting is corrosion-induced and blades with pitting can see material strength reduced to 40% of its virgin value. The presence of moisture also increases the crack propagation rate in a blade if a flaw is present.

Uncoated GTD-450 material is relatively resistant to corrosion while uncoated 403SS is quite susceptible. Relative susceptibility of various compressor blade materials and coatings is shown in Figure 32. As noted in GER-3569F, Al coatings are susceptible to erosion damage leading to unprotected sections of the blade. Because of this, the GECC-1 coating was created to combine the effects of an Al coating to prevent corrosion and a ceramic topcoat to prevent erosion.

Water droplets, in excess of 25 microns in diameter, will cause leading edge erosion on the first few stages of the compressor. This erosion, if sufficiently developed, may lead to blade failure. Additionally, the roughened leading edge surface lowers the compressor efficiency and unit performance.

It is recommended to check for erosion and pitting of the compressor blades after every 100 hours of water wash. Utilization of inlet fogging or evaporative cooling may also introduce water carryover or water ingestion into the compressor, resulting in R0 erosion. Although the design intent of evaporative coolers and inlet foggers should be to fully vaporize all cooling water prior to its ingestion into the compressor, evidence suggests that on some systems the water is not being fully vaporized (e.g., streaking discoloration on the inlet duct or bell mouth). If this is the case, then the unit should be inspected every 100 hours of combined water wash, inlet fogger, and evaporative cooler operation.
Maintenance Inspections

Maintenance inspection types may be broadly classified as standby, running and disassembly inspections. The standby inspection is performed during off-peak periods when the unit is not operating and includes routine servicing of accessory systems and device calibration. The running inspection is performed by observing key operating parameters while the turbine is running. The disassembly inspection requires opening the turbine for inspection of internal components and is performed in varying degrees. Disassembly inspections progress from the combustion inspection to the hot-gas-path inspection to the major inspection as shown in Figure 33. Details of each of these inspections are described below.

Standby Inspections

Standby inspections are performed on all gas turbines but pertain particularly to gas turbines used in peaking and intermittent-duty service where starting reliability is of primary concern. This inspection includes routinely servicing the battery system, changing filters, checking oil and water levels, cleaning relays and checking device calibrations. Servicing can be performed in off-peak periods without interrupting the availability of the turbine. A periodic startup test run is an essential part of the standby inspection.

The Maintenance and Instructions Manual, as well as the Service Manual Instruction Books, contain information and drawings necessary to perform these periodic checks. Among the most useful drawings in the Service Manual Instruction Books for standby maintenance are the control specifications, piping schematic and electrical elementaries. These drawings provide the calibrations, operating limits, operating characteristics and sequencing of all control devices. This information should be used regularly by operating and maintenance personnel. Careful adherence to minor standby inspection maintenance can have a significant effect on reducing overall maintenance costs and maintaining high turbine reliability. It is essential that a good record be kept of all inspections made and of the maintenance work performed in order to ensure establishing a sound maintenance program.

Running Inspections

Running inspections consist of the general and continued observations made while a unit is operating. This starts by establishing baseline operating data during initial startup of a new unit and after any major disassembly work. This
baseline then serves as a reference from which subsequent unit deterioration can be measured. Data should be taken to establish normal equipment start-up parameters as well as key steady state operating parameters. Steady state is defined as conditions at which no more than a 5°F/3°C change in wheelspace temperature occurs over a 15-minute time period. Data must be taken at regular intervals and should be recorded to permit an evaluation of the turbine performance and maintenance requirements as a function of operating time. This operating inspection data, summarized in Figure 34, includes: load versus exhaust temperature, vibration, fuel flow and pressure, bearing metal temperature, lube oil pressure, exhaust gas temperatures, exhaust temperature spread variation and startup time. This list is only a minimum and other parameters should be used as necessary. A graph of these parameters will help provide a basis for judging the conditions of the system. Deviations from the norm help pinpoint impending trouble, changes in calibration or damaged components.

Load vs. Exhaust Temperature

The general relationship between load and exhaust temperature should be observed and compared to previous data. Ambient temperature and barometric pressure will have some effect upon the absolute temperature level. High exhaust temperature can be an indicator of deterioration of internal parts, excessive leaks or a fouled air compressor. For mechanical drive applications, it may also be an indication of increased power required by the driven equipment.

Vibration Level

The vibration signature of the unit should be observed and recorded. Minor changes will occur with changes in operating conditions. However, large changes or a continuously increasing trend give indications of the need to apply corrective action.

Fuel Flow and Pressure

The fuel system should be observed for the general fuel flow versus load relationship. Fuel pressures through the system should be observed. Changes in fuel pressure can indicate the fuel nozzle passages are plugged, or that fuel metering elements are damaged or out of calibration.

Exhaust Temperature and Spread Variation

The most important control function to be
observed is the exhaust temperature fuel override system and the back-up over temperature trip system. Routine verification of the operation and calibration of these functions will minimize wear on the hot-gas-path parts.

The variations in turbine exhaust temperature spread should be measured and monitored on a regular basis. Large changes or a continuously increasing trend in exhaust temperature spread indicate combustion system deterioration or fuel distribution problems. If the problem is not corrected, the life of downstream hot-gas-path parts will be reduced.

Start-Up Time

Start-up time is an excellent reference against which subsequent operating parameters can be compared and evaluated. A curve of the starting parameters of speed, fuel signal, exhaust temperature and critical sequence bench marks versus time from the initial start signal will provide a good indication of the condition of the control system. Deviations from normal conditions help pinpoint impending trouble, changes in calibration or damaged components.

Coast-Down Time

Coast-down time is an excellent indicator of bearing alignment and bearing condition. The time period from when the fuel is shut off on a normal shutdown until the rotor comes to a standstill can be compared and evaluated.

Close observation and monitoring of these operating parameters will serve as the basis for effectively planning maintenance work and material requirements needed for subsequent shutdown periods.

Combustion Inspection

The combustion inspection is a relatively short disassembly shutdown inspection of fuel nozzles, liners, transition pieces, crossfire tubes and retainers, spark plug assemblies, flame detectors and combustor flow sleeves. This inspection concentrates on the combustion liners, transition pieces, fuel nozzles and end caps which are recognized as being the first to require replacement and repair in a good maintenance program. Proper inspection, maintenance and repair (*Figure 35*) of these items will contribute to a longer life of the downstream parts, such as turbine nozzles and buckets.

Figure 33 illustrates the section of an MS7001EA unit that is disassembled for a combustion inspection. The combustion liners, transition pieces and fuel nozzle assemblies should be removed and replaced with new or repaired components to minimize downtime. The removed liners, transition pieces and fuel nozzles can then be cleaned and repaired after the unit is returned to operation and be available for the next combustion inspection interval.

Typical combustion inspection requirements for MS6001B/7001EA/9001E machines are:

- Inspect and identify combustion chamber components.
- Inspect and identify each crossfire tube, retainer and combustion liner.
- Inspect combustion liner for TBC spallation, wear and cracks. Inspect combustion system and discharge casing for debris and foreign objects.

![Combustion inspection - key elements](Figure 35)
- Inspect flow sleeve welds for cracking.
- Inspect transition piece for wear and cracks.
- Inspect fuel nozzles for plugging at tips, erosion of tip holes and safety lock of tips.
- Inspect all fluid, air, and gas passages in nozzle assembly for plugging, erosion, burning, etc.
- Inspect spark plug assembly for freedom from binding, check condition of electrodes and insulators.
- Replace all consumables and normal wear-and-tear items such as seals, lockplates, nuts, bolts, gaskets, etc.
- Perform visual inspection of first-stage turbine nozzle partitions and borescope inspect (Figure 3) turbine buckets to mark the progress of wear and deterioration of these parts. This inspection will help establish the schedule for the hot-gas-path inspection.
- Perform borescope inspection of compressor.
- Enter the combustion wrapper and observe the condition of blading in the aft end of axial-flow compressor with a borescope.
- Visually inspect the compressor inlet and turbine exhaust areas, checking condition of IGVs, IGV bushings, last-stage buckets and exhaust system components.
- Verify proper operation of purge and check valves. Confirm proper setting and calibration of the combustion controls.

After the combustion inspection is complete and the unit is returned to service, the removed combustion liners and transition pieces can be bench inspected and repaired, if necessary, by either competent on-site personnel, or off-site at a qualified GE Combustion Service Center. The removed fuel nozzles can be cleaned on-site and flow tested on-site, if suitable test facilities are available. For F Class gas turbines it is recommended that repairs and fuel nozzle flow testing be performed at qualified GE Service Centers.

Hot-Gas-Path Inspection

The purpose of a hot-gas-path inspection is to examine those parts exposed to high temperatures from the hot gases discharged from the combustion process. The hot-gas-path inspection outlined in Figure 36 includes the full scope of the combustion inspection and, in addition, a detailed inspection of the turbine nozzles, stationary stator shrouds and turbine buckets. To perform this inspection, the top half of the turbine shell must be removed. Prior to shell removal, proper machine centerline support using mechanical jacks is necessary to assure proper alignment of rotor to stator, obtain accurate half-shell clearances and prevent twisting of the stator casings. The MS7001EA jacking procedure is illustrated in Figure 37.

For inspection of the hot-gas-path (Figure 33), all combustion transition pieces and the first-stage turbine nozzle assemblies must be removed. Removal of the second- and third-stage turbine nozzle segment assemblies is optional, depending upon the results of visual observations and clearance measurement. The buckets can usually be inspected in place. Also, it is usually worthwhile to fluorescent penetrant
inspect (FPI) the bucket vane sections to detect any cracks. In addition, a complete set of internal turbine radial and axial clearances (opening and closing) must be taken during any hot-gas-path inspection. Re-assembly must meet clearance diagram requirements to ensure against rubs and to maintain unit performance. Typical hot gas-path inspection requirements for all machines are:

- Inspect and record condition of first-, second- and third-stage buckets. If it is determined that the turbine buckets should be removed, follow bucket removal and condition recording instructions. Buckets with protective coating should be evaluated for remaining coating life.
- Inspect and record condition of first-, second- and third-stage nozzles.
- Inspect and record condition of later-stage nozzle diaphragm packings.
- Check seals for rubs and deterioration of clearance.

Figure 36. Hot-gas-path inspection - key elements

Figure 37. Stator tube jacking procedure - MS7001EA
Record the bucket tip clearances.

- Inspect bucket shank seals for clearance, rubs and deterioration.
- Check the turbine stationary shrouds for clearance, cracking, erosion, oxidation, rubbing and build-up.
- Check and replace any faulty wheelspace thermocouples.
- Enter compressor inlet plenum and observe the condition of the forward section of the compressor. Pay specific attention to IGVs, looking for corrosion, bushing wear evidenced by excessive clearance and vane cracking.
- Enter the combustion wrapper and, with a borescope, observe the condition of the blading in the aft end of the axial flow compressor.
- Visually inspect the turbine exhaust area for any signs of cracking or deterioration.

The first-stage turbine nozzle assembly is exposed to the direct hot-gas discharge from the combustion process and is subjected to the highest gas temperatures in the turbine section. Such conditions frequently cause nozzle cracking and oxidation and, in fact, this is expected. The second- and third-stage nozzles are exposed to high gas bending loads which, in combination with the operating temperatures, can lead to downstream deflection and closure of critical axial clearances. To a degree, nozzle distress can be tolerated and criteria have been established for determining when repair is required. These limits are contained in the Maintenance and Instruction Books previously described. However, as a general rule, first stage nozzles will require repair at the hot-gas path inspection. The second- and third-stage nozzles may require refurbishment to re-establish the proper axial clearances. Normally, turbine nozzles can be repaired several times to extend life and it is generally repair cost versus replacement cost that dictates the replacement decision.

Coatings play a critical role in protecting the buckets operating at high metal temperatures to ensure that the full capability of the high strength superalloy is maintained and that the bucket rupture life meets design expectations. This is particularly true of cooled bucket designs that operate above 1985°F (1085°C) firing temperature. Significant exposure of the base metal to the environment will accelerate the creep rate and can lead to premature replacement through a combination of increased temperature and stress and a reduction in material strength, as described in Figure 38. This degradation process is driven by oxidation of the unprotected base alloy. In the past, on early generation uncooled designs, surface degradation due to corrosion or oxidation was considered to be a performance issue and not a factor in bucket life. This is no longer the case at the higher firing temperatures of current generation designs.

Given the importance of coatings, it must be recognized that even the best coatings available will have a finite life and the condition of the coating will play a major role in determining bucket replacement life. Refurbishment through stripping and recoating is an option for extending bucket life, but if recoating is selected, it should be done before the coating has breached to expose base metal. Normally, for turbines in the MS7001EA class, this means that recoating will be required at the hot-gas-path inspection. If recoating is not performed at the hot-gas-path inspection, the runout life of the buckets would generally extend to the
major inspection, at which point the buckets would be replaced. For F class gas turbines recoating of the first stage buckets is recommended at each hot gas path inspection.

Visual and borescope examination of the hot gas-path parts during the combustion inspections as well as nozzle-deflection measurements will allow the operator to monitor distress patterns and progression. This makes part-life predictions more accurate and allows adequate time to plan for replacement or refurbishment at the time of the hot-gas-path inspection. It is important to recognize that to avoid extending the hot-gas-path inspection, the necessary spare parts should be on site prior to taking the unit out of service.

Major Inspection

The purpose of the major inspection is to examine all of the internal rotating and stationary components from the inlet of the machine through the exhaust section of the machine. A major inspection should be scheduled in accordance with the recommendations in the owner's Maintenance and Instructions Manual or as modified by the results of previous borescope and hot-gas-path inspection. The work scope shown in Figure 39 involves inspection of all of the major flange-to-flange components of the gas turbine which are subject to deterioration during normal turbine operation. This inspection includes previous elements of the combustion and hot-gas-path inspections, in addition to laying open the complete flange-to-flange gas turbine to the horizontal joints, as shown in Figure 40, with inspections being performed on individual items.

Prior to removing casings, shells and frames, the unit must be properly supported. Proper centerline support using mechanical jacks and jacking sequence procedures are necessary to assure proper alignment of rotor to stator, obtain accurate half shell clearances and to prevent twisting of the casings while on the half shell.

Typical major inspection requirements for all machines are:

- All radial and axial clearances are checked against their original values (opening and closing).
- Casings, shells and frames/diffusers are inspected for cracks and erosion.
Compressor inlet and compressor flow-path are inspected for fouling, erosion, corrosion and leakage. The IGVs are inspected, looking for corrosion, bushing wear and vane cracking.

Rotor and stator compressor blades are checked for tip clearance, rubs, impact damage, corrosion pitting, bowing and cracking.

Turbine stationary shrouds are checked for clearance, erosion, rubbing, cracking, and build-up.

Seals and hook fits of turbine nozzles and diaphragms are inspected for rubs, erosion, fretting or thermal deterioration.

Turbine buckets are removed and a non-destructive check of buckets and wheel dovetails is performed (first stage bucket protective coating should be evaluated for remaining coating life). Buckets that were not recoated at the hot-gas-path inspection should be replaced.

Rotor inspections recommended in the maintenance and inspection manual or by Technical Information Letters should be performed.
Heavy-Duty Gas Turbine Operating and Maintenance Considerations

- Bearing liners and seals are inspected for clearance and wear.
- Inlet systems are inspected for corrosion, cracked silencers and loose parts.
- Exhaust systems are inspected for cracks, broken silencer panels or insulation panels.
- Check alignment - gas turbine to generator/gas turbine to accessory gear.

Comprehensive inspection and maintenance guidelines have been developed by GE and are provided in the Maintenance and Instructions Manual to assist users in performing each of the inspections previously described.

Parts Planning

Lack of adequate on-site spares can have a major effect on plant availability; therefore, prior to a scheduled disassembly type of inspection, adequate spares should be on site. A planned outage such as a combustion inspection, which should only take two to five days, could take weeks. GE will provide recommendations regarding the types and quantities of spare parts needed; however, it is up to the owner to purchase these spare parts on a planned basis allowing adequate lead times.

Early identification of spare parts requirements ensures their availability at the time the planned inspections are performed. There are two documents which support the ordering of gas turbine parts by catalog number. The first is the Renewal Parts Catalog - Illustrations and Text. This document contains generic illustrations which are used for identifying parts. The second document, the Renewal Parts Catalog Ordering Data Manual, contains unit site-specific catalog ordering data.

Additional benefits available from the renewal parts catalog data system are the capability to prepare recommended spare parts lists for the combustion, hot-gas-path and major inspections as well as capital and operational spares.

Furthermore, interchangeability lists may be prepared for multiple units. The information contained in the Catalog Ordering Data Manual can be provided as a computer printout, on microfiche or on a computer disc. As the size of the database grows, and as generic illustrations are added, the usefulness of this tool will be continuously enhanced.

Typical expectations for estimated repair cycles for some of the major components are shown in Appendix D. These tables assume that operation of the unit has been in accordance with all of the manufacturer’s specifications and instructions. Maintenance inspections and repairs are also assumed to be done in accordance with the manufacturer’s specifications and instructions. The actual repair and replacement cycles for any particular gas turbine should be based on the user’s operating procedures, experience, maintenance practices and repair practices. The maintenance factors previously described can have a major impact on both the component repair interval and service life. For this reason, the intervals given in Appendix D should only be used as guidelines and not certainties for long range parts planning. Owners may want to include contingencies in their parts planning.

The expected repair and replacement cycle values reflect current production hardware. To achieve these lives, current production parts with design improvements and newer coatings are required. With earlier production hardware, some of these lives may not be achieved. Operating factors and experience gained during the course of recommended inspection and
maintenance procedures will be a more accurate predictor of the actual intervals.

Appendix D shows expected repair and replacement intervals based on the recommended inspection intervals shown in Figure 42. The application of inspection (or repair) intervals other than those shown in Figure 42 can result in different replacement intervals (as a function of the number of repair intervals) than those shown in Appendix D. See your GE representative for details on a specific system.

It should be recognized that, in some cases, the service life of a component is reached when it is no longer economical to repair any deterioration as opposed to replacing at a fixed interval. This is illustrated in Figure 41 for a first stage nozzle, where repairs continue until either the nozzle cannot be restored to minimum acceptance standards or the repair cost exceeds or approaches the replacement cost. In other cases, such as first-stage buckets, repair options are limited by factors such as irreversible material damage. In both cases, users should follow GE recommendations regarding replacement or repair of these components.

While the parts lives shown in Appendix D are guidelines, the life consumption of individual parts within a parts set can have variations. The repair versus replacement economics shown in Figure 41 may lead to a certain percentage of "fallout", or scrap, of parts being repaired. Those parts that fallout during the repair process will need to be replaced by new parts. The amount of fallout of parts depends on the unit operating environment history, the specific part design, and the current state-of-the-art for repair technology.

Inspection Intervals

Figure 42 lists the recommended combustion, hot-gas-path and major inspection intervals for current production GE turbines operating under ideal conditions of gas fuel, base load, and no water or steam injection. Considering the maintenance factors discussed previously, an adjustment from these maximum intervals may be necessary, based on the specific operating conditions of a given application. Initially, this determination is based on the expected operation of a turbine installation, but this should be reviewed and adjusted as actual operating and maintenance data are accumulated. While reductions in the maximum intervals will result from the factors described previously, increases in the maximum interval can also be considered.

![Figure 41. First-stage nozzle wear-preventive maintenance gas fired - continuous duty - base load](image)
where operating experience has been favorable. The condition of the hot-gas-path parts provides a good basis for customizing a program of inspection and maintenance.

GE can assist operators in determining the appropriate maintenance intervals for their particular application. Equations have been developed that account for the factors described earlier and can be used to determine application specific hot-gas-path and major inspection intervals. The hours-based hot-gas-path criterion is determined from the equation given in Figure 43. With this equation, a maintenance factor is determined that is the ratio of factored operating hours and actual operating hours. The factored hours consider the specifics of the duty cycle relating to fuel type, load setting and steam or water injection. Maintenance factors greater than one reduce the hot gas path inspection interval from the 24,000 hour ideal case for continuous base load, gas fuel and no steam or water injection. To determine the application specific maintenance interval, the maintenance factor is divided into 24,000, as shown in Figure 43.

The starts-based hot-gas-path criterion is determined from the equation given in Figure 44. As with the hours-based criteria, an application specific starts-based hot gas path inspection interval is calculated from a maintenance factor that is determined from the number of trips typically being experienced, the load level and loading rate.

As previously described, the hours and starts operating spectrum for the application is evaluated against the recommended hot gas path inspection intervals.
intervals for starts and for hours. The limiting
criterion (hours or starts) determines the main-
tenance interval. An example of the use of these
equations for the hot gas path is contained in
the appendix.

The starts-based rotor maintenance interval is
determined from the equation given in Figure
45. Adjustments to the rotor maintenance inter-
val are determined from rotor-based operating
factors as were described previously. In the cal-
culation for the starts-based rotor maintenance
interval, equivalent starts are determined for
cold, warm, and hot starts over a defined time
period by multiplying the appropriate cold,
warm and hot start operating factor times and
number of cold, warm and hot starts respective-
ly. In this calculation, the type of start must be
considered. Additionally, equivalent starts for trips from load are added. The equivalent start
total is divided by the actual number of starts to
yield the maintenance factor. The rotor starts-
based maintenance interval for a specific appli-
cation is determined by dividing the baseline
rotor maintenance interval of 5000 starts by the
calculated maintenance factor. As indicated in
Figure 45, the rotor maximum maintenance
interval is 5000 starts. Calculated maintenance

Figure 44. Hot gas path inspection starts-based condition
the turbine rotor dovetails for conditions of wear, galling or fretting.

For rotors other than Frame MS7001/9001F and FA, rotor maintenance should be performed at intervals recommended by GE through issued Technical Information Letters. Where no recommendations have been made, rotor inspection should be performed at 5,000 starts or 200,000 hours.

Equations have been developed that account for the earlier mentioned factors affecting combustion maintenance intervals. These equations represent a generic set of maintenance factors that provide general guidance on maintenance planning. As such, these equations do not represent the specific capability of any given combustion system. They do provide, however, a generalization of combustion system experience. See your GE representative for maintenance factors and limitations of specific combustion systems. For combustion parts, the baseline operating conditions that result in a maintenance factor of unity are normal fired start-up and shut-down (no trip) to base load on natural gas fuel without steam or water injection.

Application of the Extendor™ Combustion System Wear Kit has the potential to significantly increase maintenance intervals.

An hours-based combustion maintenance factor can be determined from the equations given in Figure 47 as the ratio of factored-hours to actual operating hours. Factored-hours considers the effects of fuel type, load setting and steam or water injection. Maintenance factors greater than one reduce recommended combustion inspection intervals from those shown in Figure 42 representing baseline operating conditions. To obtain a recommended inspec-

Figure 45. Rotor maintenance factor for starts-based criterion

Figure 46. Rotor maintenance factor for hours-based criterion

Starts Based Rotor Life Calculation

\[
\text{Maintenance Factor} = \frac{(Fh \cdot Nh + Fw1 \cdot Nw1 + Fw2 \cdot Nw2 + Fc \cdot Nc + Fl \cdot Nl)}{(Nh + Nw1 + Nw2 + Nc)}
\]

Rotor Maintenance Interval = \(\frac{5000}{\text{Maintenance Factor}}\)

(Not to exceed 5000 starts)

MF = 1

Where:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fh</td>
<td>1.0</td>
</tr>
<tr>
<td>Nh</td>
<td>0.5</td>
</tr>
<tr>
<td>Fw1</td>
<td>1.3</td>
</tr>
<tr>
<td>Nw1</td>
<td>0.9</td>
</tr>
<tr>
<td>Fw2</td>
<td>1.3</td>
</tr>
<tr>
<td>Nw2</td>
<td>1.4</td>
</tr>
<tr>
<td>Fc</td>
<td>2.0</td>
</tr>
<tr>
<td>Nc</td>
<td>1.4</td>
</tr>
<tr>
<td>Ft</td>
<td>4.0</td>
</tr>
<tr>
<td>Nl</td>
<td>4.0</td>
</tr>
</tbody>
</table>

For rotors within the first base after a hot shutdown or cold start rotor life factor

Hours Based Rotor Life Calculation

\[
\text{Maintenance Factor} = \frac{H + 2P + 2T}{H + P}
\]

Rotor Maintenance Interval = \(\frac{144000}{\text{Maintenance Factor}}\)

Where:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Base load hours</td>
</tr>
<tr>
<td>P</td>
<td>Peak load hours</td>
</tr>
<tr>
<td>TG</td>
<td>Hours on turning gear</td>
</tr>
</tbody>
</table>

Heavy-Duty Gas Turbine Operating and Maintenance Considerations

GE Power Systems • GER-3620J • (01/03) 34
A starts-based combustion maintenance factor can be determined from the equations given in Figure 48 and considers the effect of fuel type, load setting, emergency starts, fast loading rates, trips and steam or water injection. An application specific recommended inspection interval can be determined from the baseline inspection interval in Figure 42 and the maintenance factor from Figure 48.

Appendix B shows six example maintenance factor calculations using the above hours and starts maintenance factors equations.

Manpower Planning

It is essential that advanced manpower planning be conducted prior to an outage. It should be understood that a wide range of experience, productivity and working conditions exist around the world. However, based upon maintenance inspection man-hour assumptions, such as the use of an average crew of workers in
the United States with trade skill (but not necessarily direct gas turbine experience), with all needed tools and replacement parts (no repair time) available, an estimate can be made. These estimated craft labor man-hours should include controls and accessories and the generator. In addition to the craft labor, additional resources are needed for technical direction of the craft labor force, specialized tooling, engineering reports, and site mobilization/de-mobilization.

Inspection frequencies and the amount of downtime varies within the gas turbine fleet due to different duty cycles and the economic need for a unit to be in a state of operational readiness. It can be demonstrated that an 8000-hour interval for a combustion inspection with minimum downtime can be achievable based on the above factors. Contact your local GE Energy Services representative for the specific man-hours and recommended crew size for your specific unit.

Depending upon the extent of work to be done during each maintenance task, a cooldown period of 4 to 24 hours may be required. This time can be utilized productively for job move-in, correct tagging and locking equipment out-of-service and general work preparations. At the conclusion of the maintenance work and systems check out, a turning gear time of two to eight hours is normally allocated prior to starting the unit. This time can be used for job clean-up and arranging for any repairs required on removed parts.

Local GE field service representatives are available to help plan your maintenance work to reduce downtime and labor costs. This planned approach will outline the renewal parts that may be needed and the projected work scope, showing which tasks can be accomplished in parallel and which tasks must be sequential.

Planning techniques can be used to reduce maintenance cost by optimizing lifting equipment schedules and manpower requirements. Precise estimates of the outage duration, resource requirements, critical-path scheduling, recommended replacement parts, and costs associated with the inspection of a specific installation may be obtained from the local GE field services office.

Conclusion

GE heavy-duty gas turbines are designed to have an inherently high availability. To achieve maximum gas turbine availability, an owner must understand not only the equipment, but the factors affecting it. This includes the training of operating and maintenance personnel, following the manufacturer’s recommendations, regular periodic inspections and the stocking of spare parts for immediate replacement. The recording of operating data, and analysis of these data, are essential to preventative and planned maintenance. A key factor in achieving this goal is a commitment by the owner to provide effective outage management and full utilization of published instructions and the available service support facilities.

It should be recognized that, while the manufacturer provides general maintenance recommendations, it is the equipment user who has the major impact upon the proper maintenance and operation of equipment. Inspection intervals for optimum turbine service are not fixed for every installation, but rather are developed through an interactive process by each user, based on past experience and trends indicated by key turbine factors. In addition, through application of a Contractual Service Agreement to a particular turbine, GE can work with a user
to establish a maintenance program that may differ from general recommendations but will be consistent with contractual responsibilities. The level and quality of a rigorous maintenance program have a direct impact on equipment reliability and availability. Therefore, a rigorous maintenance program which optimizes both maintenance cost and availability is vital to the user. A rigorous maintenance program will minimize overall costs, keep outage downtimes to a minimum, improve starting and running reliability and provide increased availability and revenue earning ability for GE gas turbine users.

References

GEI-41040E, “Fuel Gases for Combustion in Heavy-Duty Gas Turbines.”

GEK-101944B, “Requirements for Water/Steam Purity in Gas Turbines.”

GER-3569F, “Advanced Gas Turbine Materials and Coatings.”

Acknowledgments

The efforts of Thomas Farrell, Kevin Spengler, Mark Duer, Roointon Pavri, and Keith Belsom to contribute to the development of this document are very much appreciated.
Appendix

A) Example—Maintenance Interval Calculation

An MS7001EA user has accumulated operating data since the last hot gas path inspection and would like to estimate when the next one should be scheduled. The user is aware from GE publications that the normal HGP interval is 24,000 hours if operating on natural gas, no water or steam injection, base load. Also, there is a 1200 start interval, based on normal start-ups, no trips, no emergency starts. The actual operation of the unit since the last hot gas path inspection is much different from the GE “baseline case.”

Annual hours on natural gas, base load
\[G = 3200 \text{ hr/yr} \]
Annual hours on light distillate
\[D = 350 \text{ hr/yr} \]
Annual hours on peak load
\[P = 120 \text{ hr/yr} \]
Steam injection rate
\[I = 2.4\% \]

Also, since the last hot gas path inspection,

The annual number of normal starts is
\[NB = 100/\text{yr} \]
The annual number of peak load starts
\[NP = 0/\text{yr} \]
The annual number of part load starts
\[NA = 40/\text{yr} \]
The annual number of emergency starts
\[E = 2/\text{yr} \]
The annual number of fast load starts
\[F = 5/\text{yr} \]
The annual number of trips from load \((aT = 8)\)
\[T = 20/\text{yr} \]

For this particular unit, the second and third-stage nozzles are FSX-414 material. The unit operates on “dry control curve.”

From *Figure 43*, at a steam injection rate of 2.4%, the value of “M” is .18, and “K” is .6.

From the hours-based criteria, the maintenance factor is determined from *Figure 43*.

\[
MF = \frac{[.6 + .18(2.4)] \times [3200 + 1.5(350) + 6(120)]}{(3200 + 350 + 120)}
\]

\[
MF = 1.25
\]

The hours-based adjusted inspection interval is therefore,

\[
H = \frac{24,000}{1.25}
\]

\[
H = 19,200 \text{ hours} \quad \text{[Note, since total annual operating hours is 3670, the estimated time to reach 19,200 hours is 5.24 years (19,200/3670).]}\]

From the starts-based criteria, the maintenance factor is determined from *Figure 43*.

\[
MF = \frac{[100 + .5(40) + 20(2) + 2(5) + 8(20)]}{(100 + 40 + 2 + 5 + 20)}
\]

\[
MF = 2.0
\]

The adjusted inspection interval based on starts is,

\[
S = \frac{1200}{2.0}
\]

\[
S = 600 \text{ starts} \quad \text{[Note, since the total annual number of starts is 167, the estimated time to reach 600 starts is 600/167 = 3.6 years.]}\]

In this case, the starts-based maintenance factor is greater than the hours maintenance factor and therefore the inspection interval is set by starts. The hot gas path inspection interval is 600 starts (or 3.6 years).
B) Combustion Maintenance Interval Calculations

7EA DLN-1 Peaking Duty with Power Augmentation

15°F Fire Increase	Gas Fuel
3.5% Steam Augmentation	6 Hours/Start
Start with Fast Load	Wet Control Curve
Normal Shut Down (No Trip)	

Factored Hours = Ki * Afi * Api * ti = 34.5 Hours

Hours Maintenance Factor = (34.5/6) = 5.8

Where
Ki = 2.34 Max(1.0, exp(0.34(3.50-1.00))) Wet
Afi = 1.00 Gas Fuel
Api = 2.46 exp(0.018(50)) Peaking
ti = 6.0 Hours/Start

Factored Starts = Ki * Afi * Api * Asi * Ni = 5.2 Starts

Starts Maintenance Factor = (5.2/1) = 5.2

Where
Ki = 2.77 Max(1.0, exp(0.34(3.50-0.50))) Wet
Afi = 1.00 Gas Fuel
Api = 1.00 No Trip at Load
Asi = 1.20 Start with Fast Load
Ni = 1.0 Considering Each Start

7EA DLN 1 Combustor Baseload on Distillate

No Fire Increase	Distillate Fuel
0.9 Water/Fuel Ratio	500 Hours/Start
Normal Start	Dry Control Curve
Normal Shut Down (No Trip)	

Factored Hours = Ki * Afi * Api * ti = 1496.5 Hours

Hours Maintenance Factor = (1496.5/500) = 3.0

Where
Ki = 1.20 Max(1.0, exp(1.80(1.10-0.80))) Dry
Afi = 1.50 Distillate Fuel, DLN
Api = 1.00 Baseload
ti = 500.0 Hours/Start

Factored Starts = Ki * Afi * Api * Asi * Ni = 3.7 Starts

Starts Maintenance Factor = (3.7/1) = 3.7

Where
Ki = 2.46 Max(1.0, exp(1.80(0.90-0.40))) Dry
Afi = 1.50 Distillate Fuel, DLN
Api = 1.00 No Trip at Load
Asi = 1.00 Start with Fast Load
Ni = 1.0 Considering Each Start

7EA DLN 2.6 Baseload on Distillate

No Fire Increase	Gas Fuel
No Steam/Water Injection	168 Hours/Start
Normal Start and Load	Dry Control Curve
Trip @ 60% Load	

Factored Hours = Ki * Afi * Api * ti = 943.8 Hours

Hours Maintenance Factor = (943.8/220) = 4.3

Where
Ki = 1.72 Max(1.0, exp(1.80(1.10-0.80))) Dry
Afi = 2.50 Distillate Fuel, DLN
Api = 1.00 Baseload
Asi = 220.0 Hours/Start

Factored Starts = Ki * Afi * Api * Asi * Ni = 5.3 Starts

Starts Maintenance Factor = (5.3/1) = 5.3

Where
Ki = 3.53 Max(1.0, exp(1.80(1.10-0.90))) Dry
Afi = 1.50 Distillate Fuel, DLN
Api = 1.00 No Trip at Load
Asi = 1.00 Baseload
Ni = 1.0 Considering Each Start

7EA Standard Combustor Baseload on Crude Oil

No Fire Increase	Crude Oil Fuel
1.0 Water/Fuel Ratio	220 Hours/Start
Normal Start and Load	Dry Control Curve
Normal Shut Down (No Trip)	

Factored Hours = Ki * Afi * Api * ti = 788.3 Hours

Hours Maintenance Factor = (788.3/220) = 3.6

Where
Ki = 1.43 Max(1.0, exp(1.80(1.00-0.80))) Dry
Afi = 2.50 Crude Oil, Std (Non-DLN)
Api = 1.00 BaseLoad
Asi = 220.0 Hours/Start

Factored Starts = Ki * Afi * Api * Asi * Ni = 5.9 Starts

Starts Maintenance Factor = (5.9/1) = 5.9

Where
Ki = 2.94 Max(1.0, exp(1.80(1.00-0.40))) Dry
Afi = 2.00 Crude Oil, Std (Non-DLN)
Api = 1.00 No Trip at Load
Asi = 1.00 BaseLoad
Ni = 1.0 Considering Each Start

7FA DNL 2.6 Baseload on Gas with Trip @ Load

No Fire Increase	Gas Fuel
No Steam/Water Injection	168 Hours/Start
Normal Start and Load	Dry Control Curve
Trip @ 60% Load	

Factored Hours = Ki * Afi * Api * ti = 168.0 Hours

Hours Maintenance Factor = (168.0/168) = 1.0

Where
Ki = 1.00 No Injection
Afi = 1.00 Gas Fuel
Api = 1.00 BaseLoad
Asi = 168.0 Hours/Start

Factored Starts = Ki * Afi * Api * Asi * Ni = 2.6 Starts

Starts Maintenance Factor = (2.6/1) = 2.6

Where
Ki = 1.00 No Injection
Afi = 1.00 Gas Fuel
Api = 1.00 BaseLoad
Asi = 1.00 Normal Start
Ni = 1.0 Considering Each Start

7FA DNL 2.6 Peak Load on Gas with Emergency Starts

15°F Fire Increase	Gas Fuel
3.5% Steam Augmentation	4 Hours/Start
Emergency Starts	Dry Control Curve
Normal Shut Down (No Trip)	

Factored Hours = Ki * Afi * Api * ti = 12.5 Hours

Hours Maintenance Factor = (12.5/4) = 3.1

Where
Ki = 1.67 Max(1.0, exp(0.34(3.50-2.00))) Dry
Afi = 1.00 Gas Fuel
Api = 1.88 exp(0.018(35)) Peaking
Asi = 4.0 Hours/Start

Factored Starts = Ki * Afi * Api * Asi * Ni = 9.6 Starts

Starts Maintenance Factor = (9.6/1) = 9.6

Where
Ki = 2.34 Max(1.0, exp(0.34(3.50-0.00))) Dry
Afi = 1.00 Gas Fuel
Api = 1.00 No Trip at Load
Asi = 1.37 exp(0.009(35)) Peaking
Ni = 1.0 Considering Each Start

C) Definitions

Reliability: Probability of not being forced out of service when the unit is needed—includes forced outage hours (FOH) while in service, while on reserve shutdown and while attempting to start normalized by period hours (PH)—units are %.

Reliability = (1 - FOH/PH) (100)

FOH = total forced outage hours
PH = period hours

Figure B-1. Combustion maintenance interval calculations
Availability: Probability of being available, independent of whether the unit is needed—includes all unavailable hours (UH) – normalized by period hours (PH) – units are %:

\[
\text{Availability} = \left(1 - \frac{\text{UH}}{\text{PH}}\right) \times 100
\]

UH = total unavailable hours (forced outage, failure to start, scheduled maintenance hours, unscheduled maintenance hours)

PH = period hours

Equivalent Reliability: Probability of a multi-shaft combined-cycle power plant not being totally forced out of service when the unit is required includes the effect of the gas and steam cycle MW output contribution to plant output — units are %.

\[
\text{Equivalent Reliability} =
\left[1 - \left(\frac{\text{GT FOH}}{\text{GT PH}} + B \left(\frac{\text{HRSG FOH}}{\text{B PH}} + \frac{\text{ST FOH}}{\text{ST PH}}\right)\right)\right] \times 100
\]

GT FOH = Gas Turbine Forced Outage Hours

GT PH = Gas Turbine Period Hours

HRSG FOH = HRSG Forced Outage Hours

B PH = HRSG Period Hours

ST FOH = Steam Turbine Forced Outage Hours

ST PH = Steam Turbine Period Hours

B = Steam Cycle MW Output Contribution (normally 0.30)

Equivalent Availability: Probability of a multi-shaft combined-cycle power plant being available for power generation—independent of whether the unit is needed—includes all unavailable hours—includes the effect of the gas and steam cycle MW output contribution to plant output; units are %.

\[
\text{Equivalent Availability} =
\left[1 - \left(\frac{\text{GT UH}}{\text{GT PH}} + B \left(\frac{\text{HRSG UH}}{\text{ST PH}}\right)\right)\right] \times 100
\]

GT UH = Gas Turbine Unavailable Hours

GT PH = Gas Turbine Period Hours

HRSG UH = HRSG Total Unavailable Hours

ST UH = Steam Turbine Unavailable Hours

ST PH = Steam Turbine Forced Outage Hours

B = Steam Cycle MW Output Contribution (normally 0.30)

MTBF—Mean Time Between Failure: Measure of probability of completing the current run. Failure events are restricted to forced outages (FO) while in service — units are service hours.

\[
\text{MTBF} = \frac{\text{SH}}{\text{FO}}
\]

SH = Service Hours

FO = Forced Outage Events from a Running (On-line) Condition

Service Factor: Measure of operational use, usually expressed on an annual basis — units are %.

\[
\text{SF} = \frac{\text{SH}}{\text{PH}} \times 100
\]

SH = Service Hours on an annual basis

PH = Period Hours (8760 hours per year)

Operating Duty Definition:

<table>
<thead>
<tr>
<th>Duty</th>
<th>Service Factor</th>
<th>Fired Hours/Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stand-by</td>
<td>< 1%</td>
<td>1 to 4</td>
</tr>
<tr>
<td>Peaking</td>
<td>1% - 17%</td>
<td>3 to 10</td>
</tr>
<tr>
<td>Cycling</td>
<td>17% - 50%</td>
<td>10 to 50</td>
</tr>
<tr>
<td>Continuous</td>
<td>> 90%</td>
<td>>> 50</td>
</tr>
</tbody>
</table>
D) Repair and Replacement Cycles

MS3002K Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners</td>
<td>CI</td>
<td>2 (CI)</td>
<td>4 (CI)</td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>CI / HGPI</td>
<td>2 (CI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Nozzles</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Nozzles</td>
<td>MI</td>
<td>2 (MI)</td>
<td>2 (MI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds</td>
<td>MI</td>
<td>2 (MI)</td>
<td>2 (MI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds</td>
<td>MI</td>
<td>2 (MI)</td>
<td>2 (MI)</td>
</tr>
<tr>
<td>Stage 1 Bucket</td>
<td>-</td>
<td>1 (MI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Bucket</td>
<td>-</td>
<td>1 (MI)</td>
<td>3 (HGPI)</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval
MI = Major Inspection Interval
(1) GE approved repair at 24,000 hours will extend life to 72,000 hours.

MS5001PA / MS5002C,D Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners</td>
<td>CI</td>
<td>4 (CI)</td>
<td>3 (CI) / 4 (CI)</td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>CI / HGPI</td>
<td>4 (CI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Nozzles</td>
<td>HGPI / MI</td>
<td>2 (MI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Nozzles</td>
<td>HGPI / MI</td>
<td>2 (MI)</td>
<td>2 (HGPI) / 2 (MI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds</td>
<td>MI</td>
<td>2 (MI)</td>
<td>2 (MI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds</td>
<td>-</td>
<td>2 (MI)</td>
<td>2 (MI)</td>
</tr>
<tr>
<td>Stage 1 Bucket</td>
<td>-</td>
<td>1 (MI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Bucket</td>
<td>-</td>
<td>1 (MI)</td>
<td>3 (HGPI)</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval
MI = Major Inspection Interval
(1) 3 (CI) for non-DLN units / (4) CI for DLN units
(2) Repair interval is every 2 (CI).
(3) 2 (HGPI) for MS5001PA / 2 (MI) for MS5002C,D
(4) GE approved repair at 24,000 hours will extend life to 72,000 hours.

PG6581B / 6BeV Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners</td>
<td>CI</td>
<td>4 (CI)</td>
<td>4 (CI) / 5 (CI)</td>
</tr>
<tr>
<td>Caps</td>
<td>CI</td>
<td>4 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>CI</td>
<td>4 (CI)</td>
<td>4 (CI) / 5 (CI)</td>
</tr>
<tr>
<td>Fuel Nozzles</td>
<td>CI</td>
<td>2 (CI)</td>
<td>2 (CI) / 3 (CI)</td>
</tr>
<tr>
<td>Crossfire Tubes</td>
<td>CI</td>
<td>2 (CI)</td>
<td>2 (CI) / 3 (CI)</td>
</tr>
<tr>
<td>Flow Divider (Distillate)</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Fuel Pump (Distillate)</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Stage 1 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>4 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Shrouds</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>4 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Bucket</td>
<td>HGPI / MI</td>
<td>2 (HGPI) / 3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Bucket</td>
<td>HGPI</td>
<td>1 (HGPI) / 2 (HGPI)</td>
<td>4 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Bucket</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>4 (HGPI)</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval
MI = Major Inspection Interval
(1) 4 (CI) for non-DLN / 5 (CI) for DLN
(2) 2 (CI) for non-DLN / 3 (CI) for DLN
(3) When recoating, perform after one hours-based Hot Gas Path Interval
(4) 3 HGPI for 6581 / 2 HGPI for 6BeV; Assumes strip, HIP, heat treat and recoat at HGPI
(5) 1 HGPI for 6581 / 2 HGPI for 6BeV

Figure D-1. Estimated repair and replacement cycles

Figure D-2. Estimated repair and replacement cycles

Figure D-3. Estimated repair and replacement cycles
PG7001(EA) / PG9001(E) Parts

<table>
<thead>
<tr>
<th>Component</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners</td>
<td>CI</td>
<td>3 (CI) / 5 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Caps</td>
<td>CI</td>
<td>3 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>CI</td>
<td>4 (CI) / 6 (CI)</td>
<td>6 (CI)</td>
</tr>
<tr>
<td>Fuel Nozzles</td>
<td>CI</td>
<td>2 (CI) / 3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Crossfire Tubes</td>
<td>CI</td>
<td>2 (CI) / 3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Flow Divider (Distillate)</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Fuel Pump (Distillate)</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Stage 1 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>4 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Shrouds</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>4 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Bucket</td>
<td>HGPI</td>
<td>2 (HGPI) / 3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Bucket</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>4 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Bucket</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>4 (HGPI)</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval
(1) Decision will be made based on fleet leader experience.
(2) The goal is to increase this interval.
(3) GE approved repair operations may be needed to meet expected life. Consult your Energy Services representative for details.
(4) With welded hardface on shroud, recoating at 1st HGPI is required to achieve replacement life.

PG6101(FA) Parts

<table>
<thead>
<tr>
<th>Component</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners</td>
<td>CI</td>
<td>5 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Caps</td>
<td>CI</td>
<td>5 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>CI</td>
<td>5 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Fuel Nozzles</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Crossfire Tubes</td>
<td>CI</td>
<td>2 (CI)</td>
<td>2 (CI)</td>
</tr>
<tr>
<td>End Covers</td>
<td>CI</td>
<td>6 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Stage 1 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Shrouds</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Exhaust Diffuser</td>
<td>HGPI</td>
<td>2 (HGPI) / 3 (HGPI)</td>
<td>2 (HGPI) / 3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Bucket</td>
<td>HGPI</td>
<td>1 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Bucket</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval
(1) Decision will be made based on fleet leader experience.
(2) The goal is to increase this interval.
(3) GE approved repair operations may be needed to meet expected life. Consult your Energy Services representative for details.
(4) With welded hardface on shroud, recoating at 1st HGPI is required to achieve replacement life.

Figure D-4. Estimated repair and replacement cycles

Figure D-5. Estimated repair and replacement cycles
PG7191(F) / PG9301(F) Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners CI</td>
<td>CI</td>
<td>5 (CI)(^{1})</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Caps CI</td>
<td>CI</td>
<td>5 (CI)(^{1})</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Transition Pieces CI</td>
<td>CI</td>
<td>5 (CI)(^{1})</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Fuel Nozzles CI</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Crossfire Tubes CI</td>
<td>CI</td>
<td>1 (CI) / 2 (CI)(^{2})</td>
<td>1 (CI) / 2 (CI)(^{2})</td>
</tr>
<tr>
<td>End Covers</td>
<td>CI</td>
<td>6 (CI)(^{1})</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Stage 1 Nozzles HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Nozzles HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Nozzles HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds HGPI</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds HGPI</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Shrouds HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Exhaust Diffuser HGPI</td>
<td>HGPI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Bucket HGPI</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Bucket HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)(^{2})</td>
<td>3 (HGPI)(^{2})</td>
</tr>
<tr>
<td>Stage 3 Bucket HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)(^{2})</td>
<td>3 (HGPI)(^{2})</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval
\(^{1}\) Decision will be made based on fleet leader experience.
\(^{2}\) 2 (CI) for 7191 / 1 (CI) for 9301. The goal is to increase this interval.
\(^{3}\) With welded hardface on shroud, recoating at 1st HGPI may be required to achieve replacement life.

PG7221(FA) / PG9311(FA) Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners CI</td>
<td>CI</td>
<td>5 (CI)(^{1})</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Caps CI</td>
<td>CI</td>
<td>5 (CI)(^{1})</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Transition Pieces CI</td>
<td>CI</td>
<td>5 (CI)(^{1})</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Fuel Nozzles CI</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Crossfire Tubes CI</td>
<td>CI</td>
<td>1 (CI) / 2 (CI)(^{2})</td>
<td>1 (CI) / 2 (CI)(^{2})</td>
</tr>
<tr>
<td>End Covers</td>
<td>CI</td>
<td>6 (CI)(^{1})</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Stage 1 Nozzles HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Nozzles HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Nozzles HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds HGPI</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds HGPI</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Shrouds HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Exhaust Diffuser HGPI</td>
<td>HGPI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Bucket HGPI</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)(^{2})</td>
</tr>
<tr>
<td>Stage 2 Bucket HGPI</td>
<td>HGPI</td>
<td>2 (HGPI) / 3 (HGPI)(^{4})</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Bucket HGPI</td>
<td>HGPI</td>
<td>3 (HGPI)(^{3})</td>
<td>3 (HGPI)(^{3})</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval
\(^{1}\) Decision will be made based on fleet leader experience.
\(^{2}\) 2 (CI) for 7211 / 1 (CI) for 9311. The goal is to increase this interval.
\(^{3}\) GE approved repair operations may be needed to meet expected life. Consult your Energy Services representative for details.
\(^{4}\) 2 (HGPI) for 7211 / 3 (HGPI) for 9311
\(^{5}\) With welded hardface on shroud, recoating at 1st HGPI may be required to achieve replacement life.
PG7231FA Parts

<table>
<thead>
<tr>
<th>Component</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners</td>
<td>CI</td>
<td>5 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Caps</td>
<td>CI</td>
<td>5 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>CI</td>
<td>5 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Fuel Nozzles</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Crossfire Tubes</td>
<td>CI</td>
<td>2 (CI)</td>
<td>2 (CI)</td>
</tr>
<tr>
<td>End Covers</td>
<td>CI</td>
<td>6 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Stage 1 Nozzles</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Nozzles</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Shrouds</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Exhaust Diffuser</td>
<td>HGPI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Bucket</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>1 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Bucket</td>
<td>HGPI</td>
<td>1 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Bucket</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval

- (1) Decision will be made based on fleet leader experience.
- (2) The goal is to increase this interval.
- (3) GE approved repair operations may be needed to meet expected life. Consult your Energy Services representative for details.
- (4) Interval can be increased to 2 (HGPI) by performing a repair operation. Consult your Energy Services representative for details.
- (5) Recoating at 1st HGPI may be required to achieve 3 HGPI replacement life.

Figure D-8. Estimated repair and replacement cycles

PG7241FA Parts

<table>
<thead>
<tr>
<th>Component</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners</td>
<td>CI</td>
<td>2 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Caps</td>
<td>CI</td>
<td>3 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>CI</td>
<td>3 (CI)</td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Fuel Nozzles</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Crossfire Tubes</td>
<td>CI</td>
<td>2 (CI)</td>
<td>2 (CI)</td>
</tr>
<tr>
<td>End Covers</td>
<td>CI</td>
<td>4 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Stage 1 Nozzles</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Nozzles</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Shrouds</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Exhaust Diffuser</td>
<td>HGPI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Bucket</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Bucket</td>
<td>HGPI</td>
<td>1 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Bucket</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval

- (1) The goal is to increase this interval.
- (2) Decision will be made based on fleet leader experience.
- (3) Decision will be made based on fleet leader experience.
- (4) Interval can be increased to 3 (HGPI) by performing a repair operation. Consult your Energy Services representative for details.
- (5) Interval can be increased to 3 (HGPI) by performing a repair operation. Recoating at 1st HGPI may be required to achieve 3 HGPI replacement life. Consult your Energy Services representative for details.
- (6) GE approved repair procedure at 2nd HGPI is required to meet 3 HGPI replacement life.

Figure D-9. Estimated repair and replacement cycles
PG9351FA Parts

<table>
<thead>
<tr>
<th>Component</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners</td>
<td>CI</td>
<td>5 (CI)<sup>(1)</sup></td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Caps</td>
<td>CI</td>
<td>5 (CI)<sup>(1)</sup></td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>CI</td>
<td>5 (CI)<sup>(1)</sup></td>
<td>5 (CI)</td>
</tr>
<tr>
<td>Fuel Nozzles</td>
<td>CI</td>
<td>3 (CI)</td>
<td>3 (CI)</td>
</tr>
<tr>
<td>Crossfire Tubes</td>
<td>CI</td>
<td>1 (CI)<sup>(2)</sup></td>
<td>1 (CI)<sup>(2)</sup></td>
</tr>
<tr>
<td>End Covers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Nozzles</td>
<td>HGPI</td>
<td>2 (HGPI)<sup>(3)</sup></td>
<td>2 (HGPI)<sup>(3)</sup></td>
</tr>
<tr>
<td>Stage 2 Nozzles</td>
<td>HGPI</td>
<td>2 (HGPI)<sup>(3)</sup></td>
<td>2 (HGPI)<sup>(3)</sup></td>
</tr>
<tr>
<td>Stage 3 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)<sup>(3)</sup></td>
<td>2 (HGPI)<sup>(3)</sup></td>
</tr>
<tr>
<td>Stage 2 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)<sup>(3)</sup></td>
<td>2 (HGPI)<sup>(3)</sup></td>
</tr>
<tr>
<td>Stage 3 Shrouds</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Exhaust Diffuser</td>
<td>HGPI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Bucket</td>
<td>HGPI</td>
<td>2 (HGPI)<sup>(3)</sup></td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Bucket</td>
<td>HGPI</td>
<td>1 (HGPI)</td>
<td>2 (HGPI)<sup>(4)</sup></td>
</tr>
<tr>
<td>Stage 3 Bucket</td>
<td>HGPI</td>
<td>2 (HGPI)<sup>(5)</sup></td>
<td>3 (HGPI)</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval
(1) Decision will be made based on fleet leader experience.
(2) The goal is to increase this interval to 2 (CI).
(3) The goal is to increase to 3 (HGPI). Decision will be made based on fleet leader experience.
(4) Recoating at 1st HGPI may be required to achieve 3 HGPI replacement life.
(5) GE approved repair procedure at 1 (HGPI) is required to meet 2 (HGPI) replacement life.

Figure D-10. Estimated repair and replacement cycles

PG7251FB Parts

<table>
<thead>
<tr>
<th>Component</th>
<th>Repair Interval</th>
<th>Replace Interval (Hours)</th>
<th>Replace Interval (Starts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion Liners</td>
<td>CI</td>
<td>3 (CI)<sup>(6)</sup></td>
<td>3 (CI)<sup>(6)</sup></td>
</tr>
<tr>
<td>Caps</td>
<td>CI</td>
<td>3 (CI)<sup>(6)</sup></td>
<td>3 (CI)<sup>(6)</sup></td>
</tr>
<tr>
<td>Transition Pieces</td>
<td>CI</td>
<td>3 (CI)<sup>(6)</sup></td>
<td>3 (CI)<sup>(6)</sup></td>
</tr>
<tr>
<td>Fuel Nozzles</td>
<td>CI</td>
<td>3 (CI)<sup>(6)</sup></td>
<td>3 (CI)<sup>(6)</sup></td>
</tr>
<tr>
<td>Crossfire Tubes</td>
<td>CI</td>
<td>3 (CI)<sup>(6)</sup></td>
<td>3 (CI)<sup>(6)</sup></td>
</tr>
<tr>
<td>End Covers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Nozzles</td>
<td>HGPI</td>
<td>2 (HGPI)<sup>(2)</sup></td>
<td>2 (HGPI)<sup>(2)</sup></td>
</tr>
<tr>
<td>Stage 2 Nozzles</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Nozzles</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 1 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)</td>
<td>2 (HGPI)</td>
</tr>
<tr>
<td>Stage 2 Shrouds</td>
<td>HGPI</td>
<td>2 (HGPI)<sup>(2)</sup></td>
<td>2 (HGPI)<sup>(2)</sup></td>
</tr>
<tr>
<td>Stage 3 Shrouds</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Exhaust Diffuser</td>
<td>HGPI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1 Bucket</td>
<td>HGPI</td>
<td>3 (HGPI)<sup>(2)</sup></td>
<td>3 (HGPI)<sup>(2)</sup></td>
</tr>
<tr>
<td>Stage 2 Bucket</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
<tr>
<td>Stage 3 Bucket</td>
<td>HGPI</td>
<td>3 (HGPI)</td>
<td>3 (HGPI)</td>
</tr>
</tbody>
</table>

CI = Combustion Inspection Interval
HGPI = Hot Gas Path Inspection Interval
(1) Decision will be made based on fleet leader experience.
(2) The goal is to increase to 4 (CI).

Figure D-11. Estimated repair and replacement cycles
List of Figures

Figure 1. Key factors affecting maintenance planning
Figure 2. Plant level – top five systems contribution to downtime
Figure 3. MS7001E gas turbine borescope inspection access locations
Figure 4. Borescope inspection programming
Figure 5. Maintenance cost and equipment life are influenced by key service factors
Figure 6. Causes of wear – hot-gas-path components
Figure 7. GE bases gas turbine maintenance requirements on independent counts of starts and hours
Figure 8. Hot-gas-path maintenance interval comparisons. GE method vs. EOH method
Figure 9. Maintenance factors – hot gas path (buckets and nozzles)
Figure 10. GE maintenance interval for hot-gas inspections
Figure 11. Estimated effect of fuel type on maintenance
Figure 12. Bucket life firing temperature effect
Figure 13. Firing temperature and load relationship – heat recovery vs. simple cycle operation
Figure 14. Heavy fuel maintenance factors
Figure 15. Steam/water injection and bucket/nozzle life
Figure 16. Exhaust temperature control curve – dry vs. wet control MS7001EA
Figure 17. Turbine start/stop cycle – firing temperature changes
Figure 18. First stage bucket transient temperature distribution
Figure 19. Bucket low cycle fatigue (LCF)
Figure 20. Low cycle fatigue life sensitivities – first stage bucket
Figure 21. Maintenance factor – trips from load
Figure 22. Maintenance factor – effect of start cycle maximum load level
Figure 23. Operation-related maintenance factors
Figure 24. FA gas turbine typical operational profile
Figure 25. Baseline for starts-based maintenance factor definition
Figure 26. The NGC requirement for output versus frequency capability over all ambients less than 25°C (77°F)
Figure 27. Turbine output at under-frequency conditions
Figure 28. NGC code compliance T_F required – FA class
Figure 29. Maintenance factor for overspeed operation ~constant T_F
Figure 30. Deterioration of gas turbine performance due to compressor blade fouling
Figure 31. Long term material property degradation in a wet environment
Figure 32. Susceptibility of compressor blade materials and coatings
Figure 33. MS7001EA heavy-duty gas turbine – shutdown inspections
Figure 34. Operating inspection data parameters
Figure 35. Combustion inspection – key elements
Figure 36. Hot-gas-path inspection – key elements
Figure 37. Stator tube jacking procedure – MS7001EA
Figure 38. Stage 1 bucket oxidation and bucket life
Figure 39. Gas turbine major inspection – key elements
Figure 40. Major inspection work scope
Figure 41. First-stage nozzle wear-preventive maintenance gas fired – continuous dry – base load
Figure 42. Base line recommended inspection intervals: base load—gas fuel—dry
Figure 43. Hot gas path inspection: hours-based criterion,
Figure 44. Hot gas path inspection starts-based condition
Figure 45. Rotor maintenance factor for starts-based criterion
Figure 46. Rotor maintenance factor for hours-based criterion
Figure 47. Combustion inspection hours-based maintenance factors
Figure 48. Combustion inspection starts-based maintenance factors
Figure B-1. Combustion maintenance interval calculations
Figure D-1. Estimated repair and replacement cycles
Figure D-2. Estimated repair and replacement cycles
Figure D-3. Estimated repair and replacement cycles
Figure D-4. Estimated repair and replacement cycles
Figure D-5. Estimated repair and replacement cycles
Figure D-6. Estimated repair and replacement cycles
Figure D-7. Estimated repair and replacement cycles
Figure D-8. Estimated repair and replacement cycles
Figure D-9. Estimated repair and replacement cycles
Figure D-10. Estimated repair and replacement cycles
Figure D-11. Estimated repair and replacement cycles